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DYNAMICS OF THE MOVING RING-LOAD ACTING IN THE INTERIOR

OF THE BI-LAYERED HOLLOW CYLINDER WITH IMPERFECT

CONTACT BETWEEN THE LAYERS

S.D. AKBAROV1,2, M.A. MEHDIYEV2, A.M. ZEYNALOV3

Abstract. The dynamics of the moving-with-constant-velocity internal ring-load (-pressure)

acting on the inner surface of the bi-layered hollow circular cylinder is studied within the scope

of the piecewise homogeneous body model by employing the exact field equations of the linear

theory of elastodynamics. It is assumed that the internal pressure is point-located with respect

to the cylinder axis and is axisymmetric in the circumferential direction. Moreover, it is assumed

that shear-spring type imperfect contact conditions on the interface between the layers of the

cylinder are satisfied. The focus is on determination of the critical velocity with analyses of

the interface stress distribution and their attenuation rules with respect to time. At the same

time, there is analysis of the problem parameters such as the ratio of modulus of elasticity,

the ratio of the cylinder’s layers thickness to the external radius of inner layer-cylinder, and

the shear-spring type parameter which characterizes the degree of the contact imperfection on

the values of the critical velocity and stress distribution. Corresponding numerical results are

presented and discussed. In particular, it is established that the values of the critical velocity

of the moving ring-load increase with the thickness of the external layer of the cylinder.

Keywords: moving ring-load, critical velocity, bi-layered hollow cylinder, shear-spring type im-

perfection, interface stresses.
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1. Introduction

A cannon bullet has its initial velocity through the moving in the interior of the cannon

which in many cases can be modelled as a circular hollow cylinder. The moving of the bullet

accompanied by a certain internal pressure which can be modelled as a moving axisymmetric

ring-load. In order to control the safety and to modernize of the cannons it is necessary to study

and to know the patterns of the dynamics of the aforementioned moving internal pressure. As

the main issue in the investigations related to the moving load is to determination of the critical

velocity of the moving load under which the resonance type accident takes place, therefore the

aforementioned studies must be focused on the determination of this critical velocity and on

the influence of the problem parameters on this velocity. In the sense of the modernization of

cannons, for instance, it is interesting to know how the use of the bi-layered cylinder instead

of the homogeneous hollow cylinder can act on the values of the critical velocity of the moving

internal pressure and how it can be controlled the values of this critical velocity through the

mechanical and geometrical parameters of the additional external hollow cylinder. Namely, the

study of these and other related questions is the subject of the present paper.
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To determine the significance and place of the present investigations among the other related

ones we consider a brief review of those and note that the first attempt in this field was made

by Achenbach et al. [2] in which the dynamic response of the system consisting of the covering

layer and half plane to a moving load was investigated with the use of the Timoshenko theory

for describing the motion of the plate. However, the motion of the half-plane was described by

using the exact equations of the theory of linear elastodynamics and the plane-strain state was

considered. It was established that critical velocity exists in the cases where the plate material

is stiffer than that of the half-plane material. Reviews of later investigations, which can be taken

as developments of those started in the paper [2], are described in the papers [21, 28]. At the

same time, in the paper [21] the critical velocity of a point-located time-harmonic varying and

unidirectional moving load which acts on the free face plane of the plate resting on the rigid

foundation, was investigated. The investigations were made within the scope of the 3D exact

equations of the linear theory of elastodynamics and it was established that as a result of the

time-harmonic variation of the moving load, two types of critical velocities appear: the first

(the second) of which is lower (higher) than the Rayleigh wave velocity in the plate material.

Later, similar results were also obtained in the papers [7-10], which were also discussed in the

monograph [5]

Note that up to now, a certain number of investigations have also been made related to the

dynamics of the moving load acting on the pre-stressed system. For instance, in the paper

[27], the initial stresses on the values of the critical velocity of the moving load acting on an

ice plate resting on water were taken into account. In this paper, the motion of the plate is

described by employing the Kirchhoff plate theory and it is established that the initial stretching

(compression) of the plate along the load moving direction causes an increase (a decrease) in

the values of the critical velocity.

The paper [28] deals with the investigation of the lateral vibration of the beam on an elastic

half-space due to a moving lateral time-harmonic load acting on the beam, the initial axial

compression of this beam is also taken into consideration. In this investigation, the motion

of the beam is written through the Euler-Bernoulli beam theory, however, the motion of the

half-space is described by the 3D exact equations of elastodynamics and it is assumed there are

no initial stresses in the half-space.

Moreover, the influence of the initial stresses acting in the half-plane on the critical velocity of

the moving load which acts on the plate which covers this half-plane was studied in the papers

[16-19] in which the plane strain state was considered and the motion of the half-plane was

written within the scope of the three-dimensional linearized theory of elastic waves in initially

stressed bodies. However, the motion of the covering layer, which does not have any initial

stresses, as in the paper [2], was written by employing the Timoshenko plate theory and the

plane-strain state is considered.

Moreover, in the paper [6], the influence of the initial stresses in the covering layer and half-

plane on the critical velocity of the moving load acting on the plate covering the half-plane,

was studied. The same moving load problem for the system consisting of the covering layer,

substrate and half-plane was studied in the paper [22]. The dynamics of the system consisting

of the orthotropic covering layer and orthotropic half plane under action of the moving and

oscillating moving load were investigated in the papers [8, 9] and the influence of the initial

stresses in the constituents of this system on the values of the critical velocity was examined in

the paper [24].
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Finally, we note the paper [11] in which the dynamics of the lineally-located moving load acting

on the hydro-elastic system consisting of elastic plate, compressible viscous fluid and rigid wall

were studied. It was established that there exist cases under which the critical velocities appear.

Note that related non-linear problems regarding the moving and interaction of two solitary

waves was examined in the paper [20] and other ones cited therein. At the same time, non-

stationary dynamic problems for viscoelastic and elastic mediums were studied in the papers

[25, 3] and other works cited in these papers. Moreover, it should be noted that up to now it

has been made considerable number investigations on fluid flow-moving around the stagnation-

point (see the paper [14] and other works listed therein). Some problems related to the effects of

magnetic field and the free stream flow-moving of incompressible viscous fluid passing through

magnetized vertical plate were studied in [16].

The investigations related to the fluid-plate and fluid-moving plate interaction were considered

the papers [12, 13].

It follows from the foregoing brief review that almost all investigations on the dynamics of

the moving and oscillating moving load relate to flat-layered systems. However, as noted in

the beginning of this section, cases often occur in practice in which it is necessary to apply a

model consisting of cylindrical layered systems, one of which is the hollow cylinder surrounded

by an infinite or finite deformable medium under investigation of the dynamics of a moving or

oscillating moving load. It should be noted that up to now some investigations have already been

made in this field. For instance, in the paper by Abdulkadirov [1] and others listed therein, the

low-frequency resonance axisymmetric longitudinal waves in a cylindrical layer surrounded by

an infinite elastic medium were investigated. Note that under “resonance waves” the cases under

which the relation dc/dk = 0 occurs, is understood, where c is the wave propagation velocity and

k is the wavenumber. It is evident that the velocity of these “resonance waves” is the critical

velocity of the corresponding moving load. Some numerical examples of “resonance waves” are

presented and discussed. It should be noted that in the paper [1], in obtaining dispersion curves,

the motion of the hollow cylinder and surrounding elastic medium is described through the exact

equations of elastodynamics, however, under investigation of the displacements and strains in

the hollow cylinder under the wave process, the motion of the hollow cylinder is described by

the classical Kirchhoff-Love theory.

Another example of the investigations related to the problems of the moving load acting on the

cylindrical layered system is the investigation carried out in the paper [33] in which the critical

velocity of the moving internal pressure acting in the sandwich shell was studied. Under this

investigation, two types of approaches were used, the first of which is based on first order refined

sandwich shell theories, while the second approach is based on the exact equations of linear

elastodynamics for orthotropic bodies with effective mechanical constants, the values of which

are determined by the well-known expressions through the values of the mechanical constants

and volumetric fraction of each layer of the sandwich shell. Numerical results on the critical

velocity obtained within these approaches are presented and discussed. Comparison of the

corresponding results obtained by these approaches shows that they are sufficiently close to each

other for the low wavenumber cases, however, the difference between these results increases with

the wavenumber and becomes so great that it appears necessary to determine which approach

is more accurate. It is evident that for this determination it is necessary to investigate these

problems by employing the exact field equations of elastodynamics within the scope of the

piecewise homogeneous body model, which is also used in the present paper. The other drawback

of the approach used in the paper [33] is the impossibility to calculation of the interface stresses

between the cylinder’s layers with enough accuracy. It is evident that such calculation of the
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interface stresses from which depends directly the adhesion strength of the layered cylinder,

must be also made within the scope of the piece-wise homogeneous body model with employing

the exact equations and relations of the elastodynamics.

Taking the foregoing statements into account, in the present paper we attempt to investigate

the dynamics of the moving ring load in the interior of the bi-layered hollow cylinder within

the scope of the piecewise homogeneous body model with the use of the exact equations and

relations of the elastodynamics. During this investigation the main attention is focused not only

on the critical velocity of the moving load and on the influence of the problem parameters on

this velocity, but also on the interface stresses appearing as a result of the mentioned moving

load.

2. Mathematical formulation of the problem

Consider a bi-layered hollow circular cylinder with internal (external) layer thickness h2 (h1)

(Fig.1). We associate the cylindrical and Cartesian systems of coordinates Orθz and Ox1x2x3
(Fig. 1) with the central axis of this cylinder. Assume that the external radius of the cross section

of the inner layer-cylinder is R and on its inner surface axisymmetric uniformly distributed

normal ring-forces moving with constant velocity V act and these forces are point-located with

respect to the cylinder central axis. Within this framework, we investigate the axisymmetric

stress-strain state in this bi-layered cylinder by employing the exact equations of the linear

theory of elastodynamics within the scope of the piecewise homogeneous body model. Below,

the values related to the inner and to the outer layer will be denoted by upper indices (2) and

(1), respectively.

Figure 1. The geometry of the system under consideration.

We suppose that the materials of the constituents are homogeneous and isotropic. We write

the field equations and contact conditions as follows.

Equations of motion:
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+
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(k)
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Elasticity relations:

σ(k)
nn = λ(k)(ε(k)rr + ε

(k)
θθ + ε(k)zz ) + 2µ(k)ε(k)nn , nn = rr; θθ; zz, σ(k)
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Strain – displacement relations:
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ε(k)rr =
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r
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, ε
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Note that the equations (1), (2) and (3) are the complete system of the field equations of

the linear theory of elastodynamics in the case under consideration and in these equations

conventional notation is used.

Consider the formulation of the boundary and contact conditions. According to the foregoing

description of the problem, the boundary conditions on the inner face surface of the inner leyer-

cylinder can be formulated as follows.

σ(2)
rr

∣∣∣
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= −P0δ(z − V t), σ(2)
rz
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r=R−h2

= 0. (4)

We assume that the contact conditions with respect to the forces and radial displacement are

continuous and can be written as follows:
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At the same time, we assume that shear-spring type imperfection occurs in the contact condition

related to the axial displacements and, according to [5] and others listed therein, this condition

is formulated by the following equation:

u(1)z

∣∣∣
r=R

− u(2)z

∣∣∣
r=R

=
FR

µ(1)
σ(1)
rz
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The dimensionless parameter F in (6) characterizes the degree of the imperfection and the range

of change of this parameter is −∞ ≤ F ≤ ∞. Note that the case where F = 0 corresponds to

complete contact, but the cases where F = ±∞ correspond to full slipping contact conditions.

Moreover, we assume that on the external surface of the external layer-cylinder the following

boundary conditions are satisfied.

σ(1)
rr

∣∣∣
r=R+h 1

= 0, σ(1)
rz
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= 0. (7)

We also suppose that

V < min
{
c
(1)
2 ; c

(2)
2

}
, c

(n)
2 =

√
µ(n)

/
ρ(n), n = 1, 2, (8)

i.e. we will consider the subsonic moving velocity.

This completes formulation of the problem and consideration of the governing field equations.

3. Method of solution

In general, for the solution of the problems related to mathematical physics, it is applied

various numerical and analytical-numerical methods some of which are detailed in the papers

[13, 29 - 31]. According to this classification of the solution methods, in the present paper, we

employ the analytical-numerical method and for solution to the problem formulated above the

well-known, classical Lame (or Helmholtz) decomposition (see, for instance, Eringen and Suhubi

[23]) is used:
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(k)
2 )2
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, (9)

where Φ(k) and Ψ(k) satisfy the following equations:
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where c
(k)
1 =

√
(λ(k) + µ(k))

/
ρ(k) and c

(k)
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√
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/
ρ(k).

We use the moving coordinate system

r′ = r, z′ = z − V t (11)

which moves with the loading internal pressure and by rewriting the Eq. (10) with the coordi-

nates r′ and z′, we obtain:
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where the primes on the r and z have been omitted. After coordinate transformation (11) the

first condition in (4) transforms to the following one:

σ(2)
rr

∣∣∣
r=R−h2

= −P0δ(z), (13)

but the other relations and conditions in (1) – (8) remain valid in the new coordinates determined

by (11).

Below we will use the dimensionless coordinates r̄ = r/h 2 and z̄ = z/h 2 instead of the

coordinates r and z, respectively and the over-bar in r̄ and z̄ will be omitted.

Thus, the solution of the considered boundary value problem is reduced to the solution to

the equations in (12). For this purpose we use the Fourier transformation with respect to

the coordinate z and by taking the problem symmetry with respect to the point z = 0 into

consideration, the functions Φ(k), Ψ(k)and the other sought values can be presented as follows.
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Substituting the expressions in (14) into the foregoing equations, relations and contact and

boundary conditions, we obtain the corresponding ones for the Fourier transformations of the

sought values. Note that after this substitution, the relation (2), the first and second relation

in (3), the second condition in (4) and all the conditions in (5), (6) and (7) remain as for their

Fourier transformations. However, the third and fourth relation in (3) and the condition (13)

and the relations in (9) transform to the following ones:
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Moreover, after the aforementioned substitution we obtain the following equations for Φ
(k)
F and

Ψ(k) from the equations in (12).
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According to the condition (7), the solution to the equations in (16) we find as follows:

Φ
(2)
F = A

(2)
1 I0(q

(2)
1 r) +A

(2)
2 K0(q

(2)
1 r),Φ

(1)
F = A

(1)
1 I0(q

(1)
1 r) +A

(1)
2 K0(q

(1)
1 r),

Ψ
(2)
F = B

(2)
1 I0(q

(2)
2 r) +B

(2)
2 K0(q

(2)
2 r),Ψ

(1)
F = B

(1)
1 I0(q

(1)
2 r) +B

(1)
2 K0(q

(1)
2 r),

q
(k)
1 =

√
s2(1− V 2

(c
(k)
1 )2

), q
(k)
2 =

√
s2(1− V 2

(c
(k)
2 )2

). (17)

Here I0(x) and K0(x) are modified Bessel functions for the purely imaginary arguments of the

first and second kind, respectively with zeroth order.

Thus, using the expressions (2), (3), (9), (15) and (17) we obtain the following expressions of

the Fourier transformations of the sought values.
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(k)
1

r
I1(q

(k)
1 r))− (1 +

λ(k)

2µ(k)
)s2I0(q

(k)
1 r))

]
+

A
(k)
2

[
λ(k)

2µ(k)
((q

(k)
1 )20.5(K0(q

(k)
1 r) +K2(q

(k)
1 r))− q

(k)
1

r
K1(q

(k)
1 r))−

(1 +
λ(k)

2µ(k)
)s2K0(q

(k)
1 r)

]
+

B
(k)
1

[
λ(k)

2µ(k)
(s(q

(k)
2 )20.5(I0(q

(k)
2 r) + I2(q

(k)
2 r))+

sq
(k)
2

r
I1(q

(k)
2 r))− (1 +

λ(k)

2µ(k)
)sq

(k)
2 I0(q

(k)
2 r)

]
+

B
(k)
2

[
λ(k)

2µ(k)
(s(q

(k)
2 )20.5(K0(q

(k)
2 r) +K2(q

(k)
2 r))− sq

(k)
2

r
K1(q

(k)
2 r))−
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(1 +
λ(k)

2µ(k)
)sq

(k)
2 K0(q

(k)
2 r)

]]
, k = 1, 2. (18)

Thus, using the expressions in (18) we attempt to satisfy the Fourier transformations of the

conditions (13) and (4) – (6), according to which, the following expressions can be written.

σ
(2)
rrF

∣∣∣
r=R−h2

= −P0 ⇒ α11A
(2)
1 + α12A

(2)
2 + α13B

(2)
1 + α14B

(2)
2 +

α15A
(1)
1 + α16A

(1)
2 + α17B

(1)
1 + α18B

(1)
2 = −P0,

σ
(2)
rzF

∣∣∣
r=R−h2

= 0 ⇒ α21A
(2)
1 + α22A

(2)
2 + α23B

(2)
1 + α24B

(2)
2 +

α25A
(1)
1 + α26A

(1)
2 + α27B

(1)
1 + α28B

(1)
2 = 0,

σ(1)
rr

∣∣∣
r=R

= σ(2)
rr

∣∣∣
r=R

⇒ α31A
(2)
1 + α32A

(2)
2 + α33B

(2)
1 + α34B

(2)
2 +

α35A
(1)
1 + α36A

(1)
2 + α37B

(1)
1 + α38B

(1)
2 = 0,

σ(1)
rz

∣∣∣
r=R

= σ(2)
rz

∣∣∣
r=R

⇒ α41A
(2)
1 + α42A

(2)
2 + α43B

(2)
1 + α44B

(2)
2 +

α45A
(1)
1 + α46A

(1)
2 + α47B

(1)
1 + α48B

(1)
2 = 0,

u(1)r

∣∣∣
r=R

= u(2)r

∣∣∣
r=R

⇒ α51A
(2)
1 + α52A

(2)
2 + α53B

(2)
1 + α54B

(2)
2 +

α55A
(1)
1 + α56A

(1)
2 + α57B

(1)
1 + α58B

(1)
2 = 0,

u(1)z

∣∣∣
r=R

− u(2)z

∣∣∣
r=R

=
FR

µ(1)
σ(1)
rz

∣∣∣
r=R

⇒ α61A
(2)
1 + α62A

(2)
2 + α63B

(2)
1 + α64B

(2)
2 +

α65A
(1)
1 + α66A

(1)
2 ++α67B

(1)
1 + α68B

(1)
2 = 0,

σ
(1)
rrF

∣∣∣
r=R+h1

= 0 ⇒ α75A
(1)
1 + α76A

(1)
2 + α77B

(1)
1 + α78B

(1)
2 = 0,

σ
(1)
rzF

∣∣∣
r=R+h1

= 0 ⇒ α85A
(1)
1 + α86A

(1)
2 + α87B

(1)
1 + α88B

(1)
2 = 0. (19)

The coefficients αij , where i; j = 1, 2, 3, ..., 8 can be easily determined from the expressions in

(18).

Thus, solving the equations in (19) with respect to the unknowns A
(2)
1 , A

(2)
2 , B

(2)
1 , B

(2)
2 ,

A
(1)
1 , A

(1)
2 , B

(1)
1 , and B

(1)
2 we determine completely the Fourier transformations of all the sought

values and, substituting these values into the integrals in (14) and calculating these integrals,

we determine the originals of the stresses and displacements in the system under consideration

caused by the action of the external moving load.

This completes the consideration of the solution method.
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4. Numerical results and discussions

4.1. The criteria and algorithm for calculation of the critical velocity. First, we con-

sider the criterion for determination of the critical velocity under which the values of the stresses

and displacements become infinity and resonance-type behavior occurs. For this purpose, we

detail the expressions of the unknown constants A
(2)
1 , A

(2)
2 , B

(2)
1 , B

(2)
2 ,A

(1)
2 , A

(1)
1 , A

(1)
2 , B

(1)
1 , and

B
(1)
2 which are obtained from the equation (19) and can be presented as follows:

{
A

(2)
1 ;A

(2)
2 ;B

(2)
1 ;B

(2)
2 ;A

(1)
2 ;A

(2)
2 ;B

(2)
1 ;B

(1)
2

}
=

1

det ∥αij∥

{
det

∥∥∥∥βA
(2)
1

ij

∥∥∥∥ ; det ∥∥∥∥βA
(2)
2

ij

∥∥∥∥ ;
det

∥∥∥∥βB
(2)
1

ij

∥∥∥∥ ; det ∥∥∥∥βB
(2)
2

ij

∥∥∥∥ ; det ∥∥∥∥βA
(1)
1

ij

∥∥∥∥ ; det ∥∥∥∥βA
(1)
2

ij

∥∥∥∥ ; det ∥∥∥∥βB
(1)
1

ij

∥∥∥∥ ; det ∥∥∥∥βB
(1)
2

ij

∥∥∥∥} , (20)

where the matrices

(
β
A

(2)
1

ij

)
,

(
β
A

(2)
2

ij

)
,

(
β
B

(2)
1

ij

)
,

(
β
B

(2)
2

ij

)
,

(
β
A

(1)
1

ij

) (
β
A

(1)
2

ij

)
,

(
β
B

(1)
1

ij

)
and

(
β
B

(1)
2

ij

)
are obtained from the matrix (αij) by replacing the first, second, third, fourth, fifth, sixth,

seventh and eighth columns with the column (−P0 , 0, 0, 0, 0 , 0)T , respectively.

At the same time, for the selected value of the load moving velocity V , the equation

det ∥αij∥ = 0 (21)

has roots with respect to the Fourier transformation parameter s and as a result of the solution

of the equation (21), the relation V = V (s) is obtained. It is obvious that if the order of this

root is one, then the integrals in (14) at the vicinity of this root can be calculated in Cauchy’s

principal value sense. However, if there is a root the order of which is two, then the integrals

in (14) have infinite values and namely the velocities corresponding to this root are called the

critical velocity. In other words, the critical velocity is determined as the velocity corresponding

to the case where

dV

ds
= 0. (22)

It should also be noted that if we rename the Fourier transformation parameter s with the

wavenumber and the load moving velocity with the wave propagation velocity, then the equation

(21) coincides with the dispersion equation of the corresponding axisymmetric wave propagation

problem. So, the relation V = V (s) obtained from the solution of the equation (21), which is

made by employing the well-known “bisection” method, is also the dispersion relation of the ax-

isymmetric longitudinal waves in the bi-layered hollow cylinder under consideration. Therefore,

in some investigations (for instance in the paper by Abdulkadirov [1]) the critical velocity is re-

named as “resonance waves” and is determined from the dispersion curves of the corresponding

wave propagation problem.

This completes the consideration of the criteria and algorithm for determination of the critical

velocity under which the resonance-type phenomenon takes place.

4.2. Algorithm for calculation of the integrals in (14). First of all we note that the

integrals in (14) and similar types of integrals are called wavenumber integrals, for calculation

of which, special algorithms are employed. These algorithms are discussed in the works [5, 26,

32] and others listed therein. According to these discussions, in the present investigation we

prefer to apply the Sommerfeld contour integration method. This method is based on Cauchy’s

theorem on the values of the analytic functions over the closed contour, and according to this
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theorem the contour [0,+∞] is “deformed” into the contour C (Fig. 2), which is called the

Sommerfeld contour in the complex plane s = s1 + is2 and in this way the real roots of the

equation (21) are avoided under calculation of the wavenumber integrals.

Figure 2. The sketch of the Sommerfeld contour.

Thus, according to this method, the integrals in (14) are transformed into the following ones.

{
Φ(k);u(k)r ;σ(k)

nn ; ε
(k)
nn

}
(r, z) =

1

π
Re

∫
C

{
Φ
(k)
F ;u

(k)
rF ;σ

(k)
nnF ; ε

(k)
nnF

}
(r, s) cos(sz)ds, nn = rr; θθ; zz

{
Ψ(k);u(k)z ;σ(k)

rz ; ε(k)rz ;
}
(r, z) =

1

π
Re

∫
C

{
Ψ

(k)
F ;u

(k)
zF ;σ

(k)
rzF ; ε

(k)
rzF

}
(r, s) sin(sz)ds. (23)

Taking the configuration of the contour C given in Fig. 2, we can write the following relations.

∫
C

f(s) cos(sz)ds =

∞∫
0

f(s1 + iε2) cos(s1 + iε2)ds1 + i

ε∫
0

f(is2) cos(is2)ds2,

∫
C
f(s) sin(sz)ds =

∞∫
0

f(s1 + iε2) sin(s1 + iε2)ds1 + i

ε∫
0

f(is2) sin(is2)ds2. (24)

Assuming that ε ≪ 1, we can neglect the integrals with respect to s2 in (24) and obtain the

following expressions for calculation of the integrals in (23).

{
Φ(k);u(k)r ;σ(k)

nn ; ε
(k)
nn

}
(r, z) ≈ 1

π
Re

+∞∫
0

{
Φ
(k)
F ;u

(k)
rF ;σ

(k)
nnF ; ε

(k)
nnF

}
(r, s1 + iε) cos((s1 + iε)z)ds1,

[
{
Ψ(k);u(k)z ;σ(k)

rz ; ε(k)rz ;
}
(r, z) ≈ 1

π
Re

+∞∫
0

{
Ψ

(k)
F ;u

(k)
zF ;σ

(k)
rzF ; ε

(k)
rzF

}
(r, s1 + is2) sin((s1 + iε)z)ds1.

(25)

Under calculation of the integrals in (25) the improper integral
+∞∫
0

(•)ds1 is replaced with the

corresponding definite integral
S∗
1∫

0

(•)ds1 and the values of S∗
1 are determined from the corre-

sponding convergence requirement. Moreover, under calculation of the integral
S∗
1∫

0

(•)ds1, the
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interval [0, S∗
1 ] is divided into a certain number (denote this number through N) of shorter in-

tervals and within each of these shorter intervals the integrals are calculated by the use of the

Gauss algorithm with ten integration points. The values of the integrated functions at these

integration points are calculated through the solution of the equation (19) and it is assumed

that in each of the shorter intervals the sampling interval ∆s1 of the numerical integration must

satisfy the relation ∆s1 ≪ min {ε, 1/z}. All these procedures are performed automatically in

the PC by the use of the corresponding programs constructed by the authors of the present

paper in MATLAB.

4.3. Numerical results related to the critical velocity. All numerical results which will

be considered in the present subsection are obtained through the solution to the equation (21).

First, we consider the numerical results obtained in the following four cases:

Case 1 :
E(1)

E(2)
= 0.35, ν(1) = ν(2) = 0.25,

ρ(1)

ρ(2)
= 0.1; (26)

Case 2 :
E(1)

E(2)
= 0.05, ν(1) = ν(2) = 0.25,

ρ(1)

ρ(2)
= 0.01. (27)

Case 3 :
E(1)

E(2)
= 0.02, ν(1) = ν(2) = 0.25,

ρ(1)

ρ(2)
= 0.01. (28)

Case 4 :
E(1)

E(2)
= 0.01, ν(1) = ν(2) = 0.25,

ρ(1)

ρ(2)
= 0.01. (29)

Note that Case 1 and Case 2 were also considered in the paper by Abdulkadirov [1] within the

assumption that h2/R = 0.5 and h1/R = ∞(i.e. in the paper [1] the system consisting of the

hollow cylinder and surrounding infinite elastic medium is considered) and the existence of the

critical velocity was observed in Case 1 (in Case 2) under F = ∞ (under F = 0) in (6), i.e. under

full slipping imperfect (perfect) contact conditions between the hollow cylinder and surrounding

elastic medium. In the present investigation we obtain numerical results not only for the cases

where F = 0 and F = ∞, but also for the cases where 0 < F < +∞ in which obtained numerical

results are more meaningful.

Thus, we consider numerical results related to the dimensionless critical velocity ccr = Vcr/c
(2)
2

(where c
(2)
2 =

√
µ(2)/ρ(2)) and obtained in the foregoing cases indicated through the relations

Case 1-4. These results are given in Tables 1, 2. 3 and 4 which relate to Case 1, Case 2, Case

3 and Case 4 respectively and are obtained in the cases where F = 0 (upper number) and

F = ∞ (lower number). Note that in Tables 1 and 2 it is also indicated the corresponding

results obtained in the work [1]. Moreover, note that the results given in the aforementioned

tables are obtained for various values of the ratios h 1/R and h 2/R.

Table 1. The values of the dimensionless critical velocity ccr (= Vcr/c
(2)
2 ) in Case 1 under the perfect contact

(upper number) and imperfect-full slipping contact (lower number) between the cylinders.

h2/R h 1/R

0.1 0.3 0.5 1.0 2.5 5.5 ∞
0.5 0.8375

0.7903
0.9160
0.8133

0.9350
0.8559

0.9355
0.8807

0.9355
0.8809

0.9355
0.8809

0.9355
0.8809 [1]

0.3 0.7064
0.6396

0.8369
0.6930

0.8864
0.7729

0.8881
0.8027

0.8881
0.8028

0.8881
0.8028

0.8881
0.8028

0.1 0.5439
0.4177

0.8159
0.6592

0.8437
0.7310

0.8437
0.7311

0.8437
0.7311

0.8437
0.7311

0.8437
0.7311
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Table 2. The values of the dimensionless critical velocity ccr (= Vcr/c
(2)
2 ) in Case 2 under the perfect contact

(upper number) and imperfect-full slipping contact (lower number) between the cylinders.

h2/R h 1/R

0.1 0.3 0.5 1.0 2.5 5.5 ∞
0.5 0.8003

0.7917
0.8173
0.7961

0.8238
0.8037

0.8260
0.8099

0.8261
0.8101

0.8261
0.8101

0.8261 [1]
0.8101

0.3 0.6501
0.6374

0.6801
0.6472

0.6930
0.6624

0.6977
0.6735

0.6977
0.6738

0.6977
0.6738

0.6977
0.6738

0.1 0.4223
0.3869

0.5112
0.4502

0.5279
0.4867

0.5291
0.4900

0.5291
0.4900

0.5291
0.4900

0.5291
0.4900

Table 3. The values of the dimensionless critical velocity ccr (= Vcr/c
(2)
2 ) in Case 3 under the perfect contact

(upper number) and imperfect-full slipping contact (lower number) between the cylinders.

h2/R h 1/R

0.1 0.3 0.5 1.0 2.5 5.5 ∞
0.5 0.7945

0.7911
0.8010
0.7917

0.8038
0.7944

0.8052
0.7978

0.8052
0.7981

0.8052
0.7981

0.8052
0.7981

0.3 0.6413
0.6362

0.6532
0.6388

0.6588
0.6446

0.6615
0.6505

0.6615
0.6508

0.6615
0.6508

0.6615
0.6508

0.1 0.3970
0.3815

0.4365
0.4069

0.4474
0.4259

0.4490
0.4296

0.4490
0.4296

0.4490
0.4296

0.4490
0.4296

Table 4. The values of the dimensionless critical velocity ccr (= Vcr/c
(2)
2 ) in Case 4 under the perfect contact

(upper number) and imperfect-full slipping contact (lower number) between the cylinders.

h2/R h 1/R

0.1 0.3 0.5 1.0 2.5 5.5 ∞
0.5 0.7925

0.7809
0.7952
0.7901

0.7966
0.7904

0.7976
0.7929

0.7977
0.7936

0.7977
0.7936

0.7977
0.7936

0.3 0.6383
0.6358

0.6436
0.6358

0.6464
0.6381

0.6482
0.6420

0.6482
0.6424

0.6483
0.6424

0.6483
0.6424

0.1 0.3877
0.3797

0.4078
0.3912

0.4144
0.4019

0.4157
0.4048

0.4157
0.4049

0.4157
0.4049

0.4157
0.4049

It follows from the analysis of the numerical results that an increase in the values of the h 1/R

and h 2/R cases an increase in the values of the critical velocity. Moreover, according to the

mechanical consideration, as we consider the subsonic regime of the moving load (8), the values

of the critical velocity must approach a certain limit with h 1/R and this limit is the critical

velocity correspondence to that related to the system consisting of the hollow cylinder and

surrounding elastic medium. Data given in Tables 1 – 4 and obtained for various h 1/R proves

this consideration and the mentioned limit values coincide with the known ones obtained in the

paper [1]. Consequently, this coinciding proves also the validity and trustiness of the calculation

algorithm and PC programs used in the present investigation and realized in MATLAB.

Figure 3. The dependence of the critical velocity on the imperfection parameter F in Case 1 (26) under

h1/R = 0.1(a), h2/R = 0.1(b), and in Case 2 (27) under h1/R = 0.5(c), and h2/R = 0.5(d).
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Analysis of the data given in Tables 2, 3 and 4 allows us to conclude that an increase in the

modulus of elasticity of the inner layer material under fixed modulus of elasticity of the external

layer material causes a decrease in the values of the dimensionless critical velocityccr (= Vcr/c
(2)
2 ).

Moreover, this analysis allows us to conclude that the full-slipping type imperfectness of the

contact conditions between the layers of the cylinder causes decrease significantly of the values

of the critical velocity.

Numerical investigations show that the critical velocities obtained in the cases where 0<F <

∞ are limited with corresponding ones obtained in the cases where F = 0 (upper limit) and

F = ∞ (lower limit). For illustration this statement we consider the graphs of the dependence

between ccr and the parameter F constructed in the case where h 2/R = 0.1 and given in Fig.3

for Case 1(Figs. 3a and 3b) and Case 2 (Figs. 3c and 3d) for h 1/R = 0.1 (Figs. 3a and 3c), 0.5

(Figs. 3b and 3d) and 2.5 (Fig. 3d).

It follows from the results given in Fig. 3 that the values of the critical velocity decrease

monotonically with the parameter F and in the quantitative sense the main decrease in the

values of the ccr appears under 0 < F < 2.0. Note that similar type results are also obtained

for the other values of the problem parameters and for Case 3 and Case 4.

This completes the consideration of the numerical results related to the critical velocity.

4.4. Numerical results related to the stress distributions. The results discussed in the

present subsection are obtained within the scope of the algorithm described in the subsection

4.2. First of all, we note on the convergence of the values of the integrals in (25) with respect

to N and S∗
1 in the cases where V < Vcr.

According to the conditions in (8), in the cases where V < Vcr the integrated expressions do

not have any singularity over an arbitrary integrated interval [0, S∗
1 ]. However, in this case the

integrated expressions have the fast oscillating terms - cos(sz) or sin(sz), and this also causes

difficulties in the convergence sense of the integrals in (25). This difficulty can also be prevented

by the use of the Sommerfeld contour integration method which is also used in the present study.

As a result of the corresponding numerical investigations, it is established that in the accuracy

and convergence senses it is enough to assume that 10−300 ≤ ε ≤ 0.01 in the integrals in (25).

Note that the values of the integrals calculated for each value of the parameter ε selected from

the interval
[
10−300, 0.01

]
coincide with each other with accuracy 10−7−10−9. Under obtaining

the numerical results considered below, it is assumed that ε = 0.0001.

It should also be noted that under using the Sommerfeld contour integration method in the

cases where V < Vcr there is no difficulty in convergence of the integrals in (25) with respect

to the values of N and the results obtained for the case where N = 1 coincide with the results

obtained for each case where N > 1. We recall that N shows the number of the shorter

integration intervals, the summation of which gives the interval [0, S∗
1 ]. Thus, in the cases under

consideration, there is no meaning to the convergence of the numerical results with respect to

the number N . Therefore, the convergence of the numerical results with respect to the length of

the integration interval, i.e. with respect to the values of S∗
1 can be verified. As such verifications

are considered in many related investigations and discussed in the monograph [5], therefore we

here do not consider numerical examples illustrating the convergence of the numerical results

with respect to the S∗
1 . Nevertheless, we note that under obtaining numerical results which will

be discussed below it is assumed that S∗
1 = 9.

Thus, we consider numerical results related to the response of the interface normal

σrr(z) =σ
(1)
rr (R, z) = σ

(2)
rr (R, z) and shear σrz(z) =σ

(1)
rz (R, z) = σ

(2)
rz (R, z) stresses to the dimen-

sionless velocity c = V/c
(2)
2 of the moving load and for this purpose we examine the Case 1
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and Case 2 only. Consider graphs given in Figs. 4 (Case 1) and 5 (Case 2) which illustrate

the response of the dimensionless normal stress σrrh2/P0 calculated at z/h 2 = 0 to the load

moving velocity c in the cases where h 2/R = 0.1(a), 0.3 (b) and 0.5 (c) for various values of the

ratio h 1/R. Also consider graphs given in Figs. 6 (Case 1) which illustrate the response of the

dimensionless shear stress σrzh2/P0 calculated at z/h 2 = 0.5 to the load moving velocity c in

the cases where h 2/R = 0.1(a), 0.3 (b) and 0.5 (c) for various values of the ratio h 1/R. Note

that all the results given in Figs. 5 and 6 are obtained in the perfect contact case, i.e. in the

case where F = 0.

Figure 4. Response interface normal stress to the load moving velocity in Case 1 calculated for various h1/R

under h2/R = 0.5(a), 0.1 0.3(b) and 0.5.

Figure 5. Response interface normal stress to the load moving velocity in Case 2 calculated for various h1/R

under h2/R = 0.1(a), 0.3(b) and 0.5.

Figs. 5 and 6 show that the absolute values of the interface stresses increase monotonically

with the load moving velocity. At the same time, these figures show that in the cases where

the load moving velocity is ”far from” the corresponding critical velocity the absolute values

of the interface normal stress decrease with decreasing of the thickness of the external layer

of the cylinder. However, in the cases where the load moving velocity is a ”near” with the

corresponding critical velocity the absolute values of this stress increase with decreasing of the

mentioned thickness. Moreover, in the latter case not only absolute values of the interface

normal stress, but also absolute values of the interface shear stress increase with decreasing of

the external layer thickness. This is because a decrease in the thickness of the external layer

causes a decrease in the values of the critical velocity.

Note that as will be shown below, absolute maximum values of the interface normal stress

with respect to the coordinate z/h 2 appear at z/h 2 = 0. However the coordinate z/h 2 at which

the absolute value of the interface shear stress has its maximum depends on the h 1/R. As in all
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the cases shown in Fig. 6 the values of the shear stress are calculated at z/h 2 = 0.5, therefore

it is difficult to make any correct conclusion on the influence of the h 1/R on the absolute values

of the shear stress from the results given in Fig. 6.

Figure 6. Response interface shear stress to the load moving velocity in Case 1 calculated for various h1/R

under h2/R = 0.1(a), 0.3(b) and 0.5.

We recall that the results given in Figs. 5 and 6 are obtained in the case where F = 0. Now we

consider the results illustrated how the parameter F acts on the response of the interface stress

to the load moving velocity. We examine this influence with respect to the interface normal

stress in Case 1 under h 2/R = 0.1 for various values of the ratio h 1/R. Note that related

results are given in Fig. 7 from which follows that in the cases where the load moving velocity is

”far from” the corresponding critical velocity the absolute values of the normal stress decrease

with the parameter F . However in the cases where the load moving velocity is a near to the

corresponding critical velocity, an increase in the values of the parameter F causes an increase

in the absolute values of this stress. It is evident that this character of the influence of the

parameter F on the studied responses can be explained with decreasing of the critical velocity

under increasing of the parameter F .

Figure 7. The influence of the imperfection parameter on the response of the interface normal stress to the load

moving velocity in Case 1 under h1/R = 0.1(a), 0.5(b) and 2.5(c) for h2/R = 0.1.

Now we consider numerical results related to the distribution of the interface stresses with

respect to the coordinate z/h 2 and examine this distribution with the results related to Case 2

and obtained in the cases where h 2/R = 0.3and 05 for various values of the ratio h 1/R under

F = 0.Graphs of this distribution of the interface normal (shear) stress are given in Fig. 8 (in

Fig. 9) and the graphs in this figure grouped with the letter a (with the letter b) show the

results obtained in the case where h 2/R = 0.3 ( in the case where h 2/R = 0.5). Thus, it follows
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from these graphs that the absolute values of the studied stresses decrease with distance from

the point at which the moving load acts. Moreover, these graphs show that the magnitude of

the decaying of the stresses with the distance from the moving load acting point increases with

the thickness of the external and inner layers of the cylinder.

We recall that the z in the Figs. 8 and 9 is the coordinate in the moving coordinate system

determined through the relations in (11). Thus, according to the relations in (11), the graphs

given in Figs. 8 and 9 can be considered as a change of the studied quantities with time at a

fixed point in the fixed coordinate system.

Figure 8. Distribution of the interface normal stress with respect to the distance from the moving load in Case 2

for various h1/R under h2/R = 0.3(a), and 0.5(b).

Figure 9. Distribution of the interface shear stress with respect to the distance from the moving load in Case 2

for various h1/R under h2/R = 0.3(a), and 0.5(b).

5. Conclusions

Thus, in the present paper the dynamics of the moving axisymmetric ring load which is point

located with respect to the cylinder axis and acts on the internal face of the bi-layered hollow

cylinder has been investigated within the scope of the piecewise homogeneous body model by

employing the exact equations of elastodynamics. It is assumed that the contact conditions

between the layers of the cylinder have shear-spring type imperfection. The subsonic regime is

considered and for solution of the corresponding boundary value problem both the method of

the moving coordinate system and the Fourier transformation, with respect to the coordinate

directed along the cylinder axis in the moving coordinate system, are applied. Analytical expres-

sions for the Fourier transformations of the sought values are determined and the algorithm for

determination of the critical velocity and inverse Fourier transformations are discussed. Numer-

ical results on the critical velocity and the stress distribution on the interface surface between
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the cylinder and surrounding elastic medium are presented and discussed. Analyses of these

numerical results allow us to make the following concrete conclusions:

(1) The values of the critical velocity depends significantly on the whole thickness of the

bi-layered hollow cylinder and increase with this thickness;

(2) An increase in the thickness of the external layer of the cylinder causes an increase in the

values of the critical velocity and approach this velocity the corresponding one obtained

for the system consisting of the hollow cylinder and surrounding infinite elastic medium;

(3) The values of the dimensionless critical velocity ccr (= Vcr/c
(2)
2 ) decrease with increasing

of the modulus of elasticity of the inner layer material of the cylinder;

(4) The values of the critical velocity decrease monotonically with increasing of the parame-

ter F which characterized the degree of the imperfectness of the contact conditions and

approach the corresponding one obtained in the full-slipping imperfect contact case;

(5) The values of the critical velocity decrease with increasing of the external radius of the

cross section of the inner layer-cylinder under constant whole thickness of the cylinder;

(6) The absolute values of the interface normal and shear stresses increase monotonically

with load moving velocity;

(7) In the cases where the load moving velocity is far from the corresponding critical velocity

the absolute values of the interface normal stresses increase with the external layer

thickness, however in the cases where the load moving velocity is a near to the critical

velocity the absolute values of the interface stresses increase with a decreasing of the

external layer thickness;

(8) The attenuation of the interface stresses with respect to time (or with the distance from

the point at which the moving load acts) becomes more significant with increasing of the

layers thickness of the cylinder.
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